

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Livepeer Node Database Schema

Note that foreign keys constraints are not enforced at runtime, except in some tests.

Tables:

	kv

	orchestrators

	unbondingLocks

	winningTickets

Table kv

All Nodes Generic key-value table for miscellaneous data.

Column | Type | Description
— | — | —
key | STRING PRIMARY KEY |
value | STRING |
updatedAt | STRING DEFAULT CURRENT_TIMESTAMP |

Values that may be set in the kv table:

Key | Description
— | —
dbVersion | The version of this database schema. Used to check compatibility and run migrations if needed.
lastBlock | The last seen block.

Table orchestrators

Broadcaster only. Cache for the orchestrators that a broadcaster is aware of.

Column | Type | Description
— | — | —
ethereumAddr | STRING PRIMARY KEY | Eth address of the orchestrator.
createdAt | STRING DEFAULT CURRENT_TIMESTAMP NOT NULL | Time this row was inserted.
updatedAt | STRING DEFAULT CURRENT_TIMESTAMP NOT NULL | Time this row was updated.
serviceURI | STRING | The serviceURI that can be used to contact the orchestrator.

Table unbondingLocks

All Nodes Tracks unbonding in order to support partial unbonding.

Column | Type | Description
—|—|—
id | INTEGER NOT NULL | The ID of the on-chain unbonding lock
delegator | STRING | The owner of the unbonding lock. Should be your node’s address.
amount | TEXT | Amount of tokens to be unbonded.
withdrawRound | int64 | Round at which unbonding period is over and tokens can be withdrawn.
usedBlock | int64 | Block at which the unbonding lock is used to withdraw or rebond tokens.

Table winningTickets (DEPRECATED)

Orchestrator only. Tracks winning tickets for probabilistic micropayments.

Column | Type | Description
—|—|—
createdAt | STRING DEFAULT CURRENT_TIMESTAMP | Time this row was inserted.
sender | STRING | Address of the broadcaster that sent the winning ticket.
recipient | STRING | Address of the orchestrator that payments will be credited to.
faceValue | BLOB | Face value of the ticket, in wei.
winProb | BLOB | The ticket’s winning probability in the range of 0 through 2^256-1.
senderNonce | INTEGER | Nonce incorporated by the broadcaster with each ticket.
recipientRand | BLOB | Value used by the orchestrator when constructing the initial ticket parameters.
recipientRandHash | STRING | Hash of the recipient rand, keccak256(recipientRand).
sig | BLOB | The broadcaster’s signature over the ticket parameters.
sessionID | STRING | Broadcast session which this ticket belongs to.

Table ticketQueue

Orchestrator/Redeemer only. ticketQueue Tracks winning tickets for probabilistic micropayments.

Column | Type | Description
—|—|—
createdAt | DATETIME DEFAULT CURRENT_TIMESTAMP | Time this row was inserted.
sender | STRING | Address of the broadcaster that sent the winning ticket.
recipient | STRING | Address of the orchestrator that payments will be credited to.
faceValue | BLOB | Face value of the ticket, in wei.
winProb | BLOB | The ticket’s winning probability in the range of 0 through 2^256-1.
senderNonce | INTEGER | Nonce incorporated by the broadcaster with each ticket.
recipientRand | BLOB | Value used by the orchestrator when constructing the initial ticket parameters.
recipientRandHash | STRING | Hash of the recipient rand, keccak256(recipientRand).
sig | BLOB PRIMARY KEY | The broadcaster’s signature over the ticket parameters.
creationRound | int64 | The round in which the ticket was created.
creationRoundBlockHash | STRING | The block hash of the block the ticket creation round was initialised.
paramsExpirationBlock | int64 | The block height at which the current recipientRand expires.
redeemedAt | DATETIME | Time the ticket was redeemed on-chain.
txHash | STRING | Transaction hash of the winning ticket redemption on-chain.

Development

Testing

Some tests depend on access to the JSON-RPC API of an Ethereum node connected to mainnet or Rinkeby.

	To run mainnet tests, the MAINNET_ETH_URL environment variable should be set. If the variable is not set, the mainnet tests will be skipped.

	To run Rinkeby tests, the RINKEBY_ETH_URL environment variable should be set. If the variable is not set, the Rinkeby tests will b eskipped

To run tests:

bash test.sh

Discovery

A broadcaster uses a discovery algorithm to fetch eligible active orchestrators to consider for selection.

A discovery algorithm uses a data source for fetch active orchestrators and then filters for eligible orchestrators.

At the moment, the following data sources are supported by the discovery algorithm:

	On-chain [https://github.com/livepeer/go-livepeer/blob/master/discovery/db_discovery.go]: The list of active orchestrators is fetched from the node’s database which is populated with active orchestrator ETH addresses and their service URIs by a OrchestratorWatcher [https://github.com/livepeer/go-livepeer/blob/master/eth/watchers/orchestratorwatcher.go] and ServiceRegistryWatcher [https://github.com/livepeer/go-livepeer/blob/master/eth/watchers/serviceRegistryWatcher.go] respectively by monitoring and processing on-chain events. This data source is the default.

	Webhook [https://github.com/livepeer/go-livepeer/blob/master/discovery/wh_discovery.go]: The list of active orchestrators is fetched from a webhook server. The Livepeer Studio webhook implementation [https://github.com/livepeer/studio/blob/master/packages/api/src/middleware/subgraph.ts] returns cached responses from the Livepeer subgraph [https://thegraph.com/hosted-service/subgraph/livepeer/arbitrum-one]. This data source can be configured using the -orchWebhookUrl flag.

	Hardcoded list [https://github.com/livepeer/go-livepeer/blob/master/discovery/discovery.go]: The list of active orchestrators is fetched from a hardcoded list. This data source can be configured using the -orchAddr flag.

After feching active orchestrators, the discovery algorithm filters for eligible orchestrators by:

	Choosing the first M orchestrators out of N that respond to a GetOrchestrator request within a timeout [https://github.com/livepeer/go-livepeer/blob/1af0a5182cd3a9aa38d961b6d1d104a3693ec814/discovery/discovery.go#L127]

	If an insufficient number of orchestrators are found within the timeout, a timeout escalation is used here [https://github.com/livepeer/go-livepeer/blob/1af0a5182cd3a9aa38d961b6d1d104a3693ec814/discovery/discovery.go#L146] to continue trying to find orchestrators

	At the moment, a broadcaster uses separate pools of trusted and untrusted orchestrators for fast verification and for the untrusted orchestrator pool discovery will set M = N (see here [https://github.com/livepeer/go-livepeer/blob/1af0a5182cd3a9aa38d961b6d1d104a3693ec814/server/broadcast.go#L411] and here [https://github.com/livepeer/go-livepeer/blob/1af0a5182cd3a9aa38d961b6d1d104a3693ec814/server/broadcast.go#L726])

	Exclusing orchestrators that are temporarily suspended

	Excluding orchestrators that do not have compatible capabilities for the job

	Excluding orchestrators that advertise invalid ticket parameters, that advertise a price that exceeds the broadcaster’s max price

Suspension

The discovery algorithm uses an in-memory suspension list (added in this PR [https://github.com/livepeer/go-livepeer/pull/1435]) per stream (meaning this suspension list is not applied to all streams and if an orchestrator is suspended for stream A it is not necessarily suspended for stream B) to keep track of orchestrators that should be temporarily considered ineligible. If an orchestrator is suspended [https://github.com/livepeer/go-livepeer/blob/1af0a5182cd3a9aa38d961b6d1d104a3693ec814/discovery/discovery.go#L133] it will be excluded unless there are an insufficient number [https://github.com/livepeer/go-livepeer/blob/1af0a5182cd3a9aa38d961b6d1d104a3693ec814/discovery/discovery.go#L159] of non-suspended orchestrators (i.e. if the current number < M). server/broadcast.go contains the logic for initializing a suspension list (implemented as a suspender [https://github.com/livepeer/go-livepeer/blob/1af0a5182cd3a9aa38d961b6d1d104a3693ec814/server/suspensions.go#L9]) and suspending orchestrators if the broadcaster encounters a suspendable error condition.

Ethereum

Reward

The node can run a reward service that will automatically call a smart contract function to mint LPT rewards each round that the node’s on-chain registered address is in the active set. Note that at the moment, only the on-chain registered address can call the smart contract function to mint LPT rewards.

If the node detects that its address is registered on-chain, it will automatically start the reward service. The reward service can also be explicitly disabled by starting the node with -reward=false and explicitly enabled by starting the node with -reward.

Round Initialization

The node can run a round initialization service that will automatically call a smart contract function to initialize the current round.

The round initialization service is disabled by default and can be enabled by starting the node with -initializeRound.

Gas Prices

After the EIP-1559 upgrade on Ethereum, the node treats the gas price as priority fee + base fee.

Max gas price

The maxGasPrice parameter makes sure the transaction fee never exceeds the specified limit.

	If the current network gas price is higher than maxGasPrice, the transaction is not sent

	The transaction parameter maxFeePerGas is set to maxGasPrice

	Note: As of v0.5.24, this is not true, but another release will be published to resolve this

The following options can be used to get the max gas price:

	curl localhost:7935/maxGasPrice

	Run livepeer_cli and observe the max gas price in the node stats

The following options can be used to set the max gas price to <MAX_GAS_PRICE>, a Wei denominated value:

	Start the node with -maxGasPrice <MAX_GAS_PRICE>

	curl localhost:7935/setMaxGasPrice?maxGasPrice=<MAX_GAS_PRICE>

	Run livepeer_cli and select the set max gas price option

Min gas price

The following options can be used to get the min gas price:

	curl localhost:7935/minGasPrice

	Run livepeer_cli and observe the min gas price in the node stats

The following options can be used to set the min gas price to <MIN_GAS_PRICE>, a Wei denominated value:

	Start the node with -minGasPrice <MIN_GAS_PRICE>

	curl localhost:7935/setMinGasPrice?minGasPrice=<MIN_GAS_PRICE>

	Run livepeer_cli and select the set min gas price option

Known edge-cases

A known edge-case that affects the initialization of new rounds and the ticket redemption occurs when the L2 block-rate is significantly slower than the L1 block-rate.
This may result in:

	go-livepeer not attempting to initialize a new round based on the expected roundLength interval - which is based on L1 block values.

	go-livepeer attempting to redeem a winning ticket after its on-chain validity period already expired due to the block-rate difference between L1 and L2, which may result in the ticket is expired error [https://github.com/livepeer/protocol/blob/confluence/contracts/pm/mixins/MixinTicketProcessor.sol#L64].

	go-livepeer attempting to redeem a winning ticket after its off-chain validity period [https://github.com/livepeer/go-livepeer/blob/3230eb1ac29fd86f88f1e6f768ff6bfbeef95572/pm/recipient.go#L24] already expired due to the block-rate difference between L1 and L2, which may result in the TicketParams expired error [https://github.com/livepeer/go-livepeer/blob/master/pm/recipient.go#L17].

Installing and Managing Go

Go

Follow the instructions at https://go.dev/doc/install to download and install Go.

If you are developing on Apple Silicon (M1), you will need to:

	Use Go >= 1.16 as arm64 support was introduced in 1.16 [https://go.dev/doc/go1.16]

	Download the *-darwin-arm64 binary instead of the *-darwin-amd64 binary on the downloads page [https://go.dev/dl/].

Managing Go Versions

There are a few ways to manage different Go versions:

	go install [https://go.dev/doc/manage-install]

	gvm [https://github.com/moovweb/gvm]

Using gvm has the benefit of automatically aliasing go to whichever version of Go you are currently using as opposed to having to use a command like go1.10.7.

gvm: Installing arm64 binaries on >= macOS 11

Until https://github.com/moovweb/gvm/pull/380 is merged, gvm does not support installing arm64 binaries on >= macOS 11 (i.e. Big Sur). A workaround for this issue is to install gvm using the fork for the PR:

Download installer script
curl -s -S -L https://raw.githubusercontent.com/moovweb/gvm/master/binscripts/gvm-installer
Run installer script using feature branch from fork
SRC_REPO=https://github.com/jeremy-ebler-vineti/gvm.git bash gvm_installer feature/support-big-sur

Then, you can run the following command which should download the arm64 binary if you are on an arm64 machine:

gvm install <version> -B

GPU Support

Livepeer supports decoding and encoding on NVIDIA GPUs on Linux and Windows.
GPU transcoding can be enabled by starting Livepeer in -transcoder mode with
the -nvidia <device-list> flag. The <device-list> is a comma-separated
numerical list of GPU devices that you wish to use for transcoding. If you are
unsure of your GPU device, use the nvidia-smi utility. For example, to select
devices 0, 2 and 4:

./livepeer -transcoder -nvidia 0,2,4

Alternatively, if you want to use all the available NVIDIA GPUs on your system,
you can set the flag like:

./livepeer -transcoder -nvidia all

Limitations

Currently the following limitations are observed:

	Device validity Ensure valid devices are selected when starting up the node. Currently there is no start-up check to ensure device validity.

	YUV 4:2:0 input format The pixel format of the source video must be in YUV 4:2:0 format (planar or
interleaved). Anything else will return an error.

	CUDA Availability If running the Livepeer binary, the CUDA shared libraries are expected to be installed in /usr/local/cuda. If the CUDA location differs on your machine, run the node with LD_LIBRARY_PATH=</path/to/cuda> environment variable.

So far, Livepeer has been tested to work with the following driver versions:

CUDA | Nvidia
–|–
10.0.130 |
10.1 | 418.39 , 430.50
10.2 | 440.33.01, 440.118.02
11.1,11.2 | 460.39

Nvidia’s 450.xx drivers can occasionally lead to stuck transcoding sessions.
Refer to this forum post [https://forum.livepeer.org/t/working-around-occasional-transcoding-issues-with-nvidia-driver-450/1219] on how to switch to a different driver version.

All Nvidia chipsets from the Maxwell series [https://developer.nvidia.com/maxwell-compute-architecture] and later, that have NVDEC/NVENC cores, should theoretically be supported by go-livepeer.

	Driver Limits Retail GPU cards may impose a software limit on the number of concurrent transcode sessions allowed on the system in official drivers.

	Linux Only We’ve only tested this on Linux. We haven’t tried other platforms; if it works elsewhere, especially on Windows or OSX, let us know!

Running Tests

A number of GPU unit tests are included. These may help verify your GPU setup.
To run these tests, the Livepeer source code must be obtained; see the
install documentation for details on setting up a build
environment. Then the Livepeer unit test suite can be run with the NV_DEVICE
environment variable. For example, to run the unit tests on GPU 1:

NV_DEVICE=1 bash test.sh

A more intensive set of GPU tests is available in the LPMS repository, which is vendored within go-livepeer. Refer to the LPMS README [https://github.com/livepeer/lpms/blob/master/README] for details on how to run these tests.

HTTP endpoint

The Livepeer node exposes a HTTP interface for monitoring and managing the node. This is how the livepeer_cli tool interfaces with a running node.
By default, the CLI listens to localhost:7935. This can be adjusted with the -cliAddr <interface>:<port> flag.

Available endpoints:

/getLogLevel returns current verbosity level in the body of response

/setLogLevel sets verbosity current level. Level to set should be provided in body of the request, encoded as application/x-www-form-urlencoded. Parameter should be named loglevel.
It can be used from command like this:

curl -F loglevel=6 http://localhost:7935/setLogLevel

Log level should be integer from 0 to 6, where 6 means most verbose logging.

RTMP Ingest

Livepeer starts a RTMP server on the default port of 1935 as the ingest point
into the Livepeer network. Upon ingest, the segmenter pulls the RTMP stream
prior to transcoding.

Ingest Configuration

By default, the RTMP server listens to localhost on the default RTMP port of 1935.

This can be set at node start-up time with the -rtmpAddr flag, which takes an
interface:port pair, such as -rtmpAddr 0.0.0.0:1936 which would make the
Livepeer node listen to all interfaces on port 1936.

The node has a default maximum of 10 concurrent RTMP sessions. To change this, run the node with the -maxSessions flag indicating the limit, for example -maxSessions 100 to raise the limit to 100 concurrent sessions.

Stream Naming and Addressing

The stream name is taken to be the first part of the RTMP URL path. The stream name may optionally be prefixed with /stream/ to match the HLS output address.

Canonical Form
rtmp://localhost/movie1
rtmp://localhost/movie2

Alternate Form
rtmp://localhost/stream/movie1
rtmp://localhost/stream/movie2

Output URL
http://localhost:8935/stream/movie1.m3u8
http://localhost:8935/stream/movie2.m3u8

If no name is provided, then a stream name is randomly generated. For example:

Ingest URL
rtmp://localhost
rtmp://localhost/stream # alternate form; /stream gets stripped

RTMP Playback URL
rtmp://localhost/<randomStreamName>/<randomStreamKey>

HLS Playback URL
http://localhost:8935/stream/<randomStreamName>.m3u8

There are two options for using randomly generated stream names.

If the node is started with the -currentManifest flag, then the latest stream can be
accessed via the HLS current.m3u8 endpoint, regardless of its name, eg

curl http://localhost:8935/stream/current.m3u8

Alternatively, a list of active streams can be found by querying the CLI API:

curl http://localhost:7935/status

Stream Authentication

Streams can be authenticated through a webhook. See the documentation on the
RTMP Authentication Webhook for more details.

RTMP Playback Protection

The RTMP stream can be played back, or pulled from Livepeer by another part of
the ingest infrastructure. To prevent unauthorized RTMP playback of streams
whose name is known, a stream key is randomly appended to the playback URL at
ingest time. However, the broadcaster can control the stream key by
appending the key to the RTMP URL.

Ingest and Playback URL: protected by stream key
rtmp://localhost/movie/Secret/Stream/Key

HLS Output URL: publicly known
http://localhost:8935/stream/movie.m3u8

Here, the stream name is movie and the stream key is Secret/Stream/Key.
The RTMP stream can then be played back with this complete RTMP URL. The key is
optional; if one is not supplied, then a random key will be generated. The key
may also be specified via webhook.

HTTP Push

Livepeer starts an HTTP server on the default port of 8935, as another ingest point
into the Livepeer network. Upon ingest, HTTP stream is pushed to the segmenter
prior to transcoding. The stream can be pushed via a PUT or POST HTTP request to the
/live/ endpoint. HTTP request timeout is 8 seconds.

HTTP ingest is enabled by default. However, if the HTTP server is publicly accessible (i.e. listening on a non-local host) and an authentication webhook URL is not specified then HTTP ingest will be disabled. In this case, to enable HTTP ingest, set an authentication webhook URL using -authWebhookUrl and/or use the -httpIngest flag when starting the node. To always disable HTTP ingest start the node with -httpIngest=false.

The body of the request should be the binary data of the video segment.

Two HTTP headers should be provided:

	Content-Resolution - in the format widthxheight, for example: 1920x1080.

	Content-Duration - duration of the segment, in milliseconds. Should be an integer.
If Content-Duration is missing, 2000ms is assumed by default.

The upload URL should have this structure:

http://broadcasters:8935/live/movie/12.ts

Where movie is name of the stream and 12 is the sequence number of the segment.

The HLS manifest will be available at:

http://broadcasters:8935/stream/movie.m3u8

MPEG TS and MP4 are supported as formats. To receive results as MP4, upload the
segment to a path ending with “.mp4” rather than “.ts”, such as:

http://broadcasters:8935/live/movie/14.mp4

Possible statuses returned by HTTP request:

	500 Internal Server Error - in case there was error during segment’s transcode

	503 Service Unavailable - if the broadcaster wasn’t able to find an orchestrator to transcode the segment

	200 OK - if transcoded successfully. Returned only after transcode completed

Optionally, actual transcoded segments or URLs pointing to them can be returned in the response.
If multipart/mixed specified in the Accept header, then Content-Type of the response will be set to multipart/mixed, and the body will consist of ‘parts’, according to RFC1341 [https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html]. If external object storage is used by broadcaster, then each part will have application/vnd+livepeer.uri content type, and will contain URL for the transcoded segment. If no external object storage is used, then Content-Type of each part will be video/MP2T, and the body of the part will contain the actual transcoded segment.

Each part will also contain these headers:

	Content-Length - length of the part in bytes

	Rendition-Name - profile name of the rendition, either as specified in broadcaster’s configuration or as returned from webhook. For example - P144p25fps16x9

	Content-Disposition will contain attachment; filename="FILENAME". For example - attachment; filename="P144p25fps16x9_12.ts" or attachment; filename="P144p25fps16x9_17.txt"

Sample URLs and requests:

Push URL, MPEG TS
http://localhost:8935/live/movie/12.ts

HLS Playback URL
http://localhost:8935/stream/movie.m3u8

Curl request, MPEG TS
curl -X PUT -H "Accept: multipart/mixed" -H "Content-Duration: 2000" -H "Content-Resolution: 1920x1080" --data-binary "@bbb0.ts" http://localhost:8935/live/movie/0.ts

Curl request, MP4
curl -X PUT -H "Accept: multipart/mixed" -H "Content-Duration: 2000" -H "Content-Resolution: 1920x1080" --data-binary "@bbb1.ts" http://localhost:8935/live/movie/1.mp4

HTTP push via FFmpeg
(ffmpeg produces 2s segments by default; Content-Duration header will be missing but go-livepeer will presume 2s)
ffmpeg -re -i movie.mp4 -c:a copy -c:v copy -f hls http://localhost:8935/live/movie/

Example responses:

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary=2f8514cee02991b34c00
Date: Fri, 31 Jan 2020 00:02:22 GMT
Transfer-Encoding: chunked

--2f8514cee02991b34c00
Content-Disposition: attachment; filename="P240p30fps16x9_10.txt"
Content-Length: 34
Content-Type: application/vnd+livepeer.uri
Rendition-Name: P240p30fps16x9

https://external.storage/stream/movie/P240p30fps16x9/10.ts
--2f8514cee02991b34c00--

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary=94eaf473f7957940e066
Date: Fri, 31 Jan 2020 00:04:40 GMT
Transfer-Encoding: chunked

--94eaf473f7957940e066
Content-Disposition: attachment; filename="P240p30fps16x9_10.ts"
Content-Length: 105656
Content-Type: video/MP2T
Rendition-Name: P240p30fps16x9

Binary data here

--94eaf473f7957940e066--

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary=94eaf473f7957940e066
Date: Fri, 31 Jan 2020 00:04:40 GMT
Transfer-Encoding: chunked

--94eaf473f7957940e066
Content-Disposition: attachment; filename="P240p30fps16x9_10.mp4"
Content-Length: 105656
Content-Type: video/mp4
Rendition-Name: P240p30fps16x9

Binary data here

--94eaf473f7957940e066--

HTTP Push Examples:

	Python example [https://gist.github.com/j0sh/265c33197ce464ff7cd0a26f81be8f78#file-livepeer-multipart-py]

Multi Orchestrator Setup

This document describes the various ways an operator could run multiple Orchestrator nodes. Each Orchestrator node will still have its own keypair and will still accept payments on behalf of the on-chain registered Ethereum address. This setup allows an operator to separate node operations; e.g. one node responsible for redeeming winning tickets, one node for calling reward and multiple nodes solely responsible for handling transcode requests.

It is also possible to connect multiple Transcoder nodes to an Orchestrator node. The documentation about scaling transcoding by splitting Orchestrator and Transcoder nodes can be found here [https://livepeer.org/docs/video-miners/how-to-guides/o-t-split].

Unlocking Account and Connecting to Ethereum

The Livepeer node requires you to unlock your Ethereum account and provide connection information for an Ethereum JSON-RPC provider in order to interact with the Livepeer Protocol [https://github.com/livepeer/protocol], unless the node is in standalone transcoder [https://livepeer.org/docs/video-miners/how-to-guides/o-t-split] mode.

For brevity we’ll exclude these flags in the examples and replace them with <...ETH SETUP...>. If no Ethereum account is available the Livepeer node will create one for you.

More detailed instructions for connecting to Ethereum can be found here [https://livepeer.org/docs/installation/connect-to-ethereum].

livepeer \
 -network <mainnet|rinkeby> \
 -ethUrl <JSON_RPC_PROVIDER> \
 -ethKeystorePath <PATH_TO_KEYSTORE_DIR> \
 -ethAcctAddr <ETHEREUM_ADDRESS> \
 -ethPassword <ETHEREUM_ACCOUNT_PASSWORD (string|path)> \
 -ethController <CONTROLLER_CONTRACT_ADDRESS (required if '-network' not provided)>

Single Orchestrator with Redeemer

This setup allows an operator to use a separate Ethereum account for redeeming winning tickets on-chain and paying for that transaction while the ticket recipient is still the operator’s on-chain registered Ethereum address.

The Orchestrator node will still be responsible for calling reward*.

* currently, only the on-chain registered address can call reward

	Start the Redeemer

livepeer \
 <...ETH SETUP...> \
 -redeemer \
 -ethOrchAddr <ORCHESTRATOR_ON_CHAIN_ETH_ADDR (also the recipient address)>

	Start the Orchestrator node

livepeer \
 <...ETH SETUP...> \
 -orchestrator -transcoder \
 -redeemerAddr <REDEEMER_HTTP_ADDR> \
 -pricePerUnit <PRICE (wei/pixel if '-pixelsPerUnit' is not set)>

Blockchain Service Node with (Multiple) Orchestrator node(s)

In this setup a node started with the keys for the on-chain registered address will be responsible for all transactions.

In order to use multiple Orchestrator nodes with this setup, the cluster of Orchestrator nodes responsible for transcoding would have to be behind a load balancer (e.g. DNS load balancing). The URI of the load balancer will be the on-chain registered Service URI.

	Start the Blockchain Service Node

livepeer \
 <...ETH SETUP...> \
 -redeemer \
 -httpAddr <REDEEMER_HTTP_ADDR (host):port> \

	Start an Orchestrator node

livepeer \
 <...ETH SETUP...> \
 -orchestrator -transcoder \
 -ethOrchAddr <ORCHESTRATOR_ON_CHAIN_ETH_ADDR> \
 -redeemerAddr <REDEEMER_HTTP_ADDR> \
 -pricePerUnit <PRICE (wei/pixel if '-pixelsPerUnit' is not set)>

Redeemer + RewardService + Multiple Orchestrator Nodes

This is the “coldest” setup possible for on-chain registered addresses. The keys for the on-chain registered address will be responsible for calling reward.

To use this setup with multiple Orchestrator nodes a load balancer is required as described above.

	Start the Redeemer

livepeer \
 <...ETH SETUP...> \
 -redeemer \
 -httpAddr <REDEEMER_HTTP_ADDR (host):port> \
 -ethOrchAddr <ORCHESTRATOR_ON_CHAIN_ETH_ADDR>

	Start the RewardService

The address specified via -ethAcctAddr should be the on-chain registered address.

livepeer \
 <...ETH SETUP...> \

	Start an Orchestrator node

The main difference is to use the -ethOrchAddr flag and specify the on-chain registered Ethereum address, in this case that of the RewardService node.

livepeer \
 <...ETH SETUP...> \
 -orchestrator -transcoder \
 -ethOrchAddr <ORCHESTRATOR_ON_CHAIN_ETH_ADDR (also the recipient address)> \
 -redeemerAddr <REDEEMER_HTTP_ADDR> \
 -pricePerUnit <PRICE (wei/pixel if '-pixelsPerUnit' is not set)>

Livepeer Networking Protocol v2 Spec

High level flow

[image: https://user-images.githubusercontent.com/292510/41455677-c8437268-7032-11e8-9ce8-bfdd9b6e3fc0.png]broadcaster-transcoder network v2 1
Sequence diagram source [https://sequencediagram.org/index.html#initialData=C4S2BsFMAIBkQG6QA6UgJ2gOUsA7gPboDWIAdgObQIBMAUHcgIbqgDGIzZw0ASpBRABnYOgCedAELoCTACZsmIjAFoAfP0EjxALmgB5dGwAWkbU2BE+kAI51Nw0WJXrpshUuAY9hk2dEWVvxCyAxu8orK6Oq+puaW6DoAOmQAKuhMZEJsBHIY1nbhHlEAPC6x-hkJOumZ2bn5AJJkAGYEDAzgBAShRZFe0Wq1WTl5idAAygIAtpDcBVIyEZ4YZSrD9WN6UxSz88Ghc3J0QA]

For a reference to each message used by Livepeer, refer to the Protocol Buffers definitions [https://github.com/livepeer/go-livepeer/blob/master/net/lp_rpc.proto].

Broadcaster to Registry

The broadcaster does an on-chain lookup to retrieve the orchestrator’s ServiceURI in order to discover prices, capabilities and to initiate a transcoding job.

Broadcaster to Orchestrator:

gRPC GetOrchestrator : OrchestratorRequest -> OrchestratorInfo

The GetOrchestrator method is called by the broadcaster to discover information about an orchestrator. The request contains the following data:

// This request is sent by the broadcaster in `GetOrchestrator` to request
// information on the orchestrator.
message OrchestratorRequest {

 // Ethereum address of the broadcaster
 bytes address = 1;

 // Broadcaster's signature over its hex-encoded address
 bytes sig = 2;
}

The sig field is the broadcaster’s signature using its Ethereum key, over the broadcaster’s public Ethereum address, expressed as a hex-encoded string. The signature consists of the resulting bytes without any further encoding.
sig = broadcaster.Sign(address.Hex())

Verification of OrchestratorRequest consists of the following steps:

	Check the signature sig was produced by the address given by address.

The OrchestratorInfo response contains:

// The orchestrator sends this in response to `GetOrchestrator`, containing the
// miscellaneous data related to the job.
message OrchestratorInfo {

 // URI of the orchestrator to use for submitting segments
 string orchestrator = 1;

 // Parameters for probabilistic micropayment tickets
 TicketParams ticket_params = 2;

 // Orchestrator's preferred object storage, if any
 repeated OSInfo storage = 32;
}

Broadcaster to Transcoder

POST /segment

Invoked each by the broadcaster for each segment that needs to be transcoded. The orchestrator address is taken from the orchestrator field in OrchestratorInfo.

Required Headers:

	Livepeer-Segment
Proves that the broadcaster generated this segment. Serialized protobuf struct, base64 encoded.

// Data included by the broadcaster when submitting a segment for transcoding.
message SegData {

 // Manifest ID this segment belongs to
 bytes manifestId = 1;

 // Sequence number of the segment to be transcoded
 int64 seq = 2;

 // Hash of the segment data to be transcoded
 bytes hash = 3;

 // Transcoding profiles to use
 bytes profiles = 4;

 // Broadcaster signature for the segment. Corresponds to:
 // broadcaster.sign(manifestId | seqNo | dataHash | profiles)
 bytes sig = 5;

 // Broadcaster's preferred storage medium(s)
 repeated OSInfo storage = 32;
}

	Content-Type
video/MP2T or application/vnd+livepeer.uri

The composition of the body (and certain headers) varies based on the content-type. For the content-type of video/MP2T , the body is composed of the bytes of the segment. For the content-type of application/vnd+livepeer.uri, the body holds a URI where the data can be downloaded from.

Processing a /segment request consists of the following steps:

	Verify the segment signature from the broadcaster.

	Download the body

	Verify the keccak256 hash of the body matches SegData.hash

	Return 200 OK header. If any of the above steps fail, a non-200 response is returned.

	Transcoder performs additional checks and transcodes the segment.

	Return a TranscodeResult body based on the results of the transcode.

Response:

The response is split into two parts: the 200 OK (or error) is sent after the download, and the response body consisting of a TranscodeResult is sent after the transcode completes. This gives broadcasters approximate visibility into how long the upload and transcode steps each take.

// Response that a transcoder sends after transcoding a segment.
message TranscodeResult {

 // Sequence number of the transcoded results.
 int64 seq = 1;

 // Result of transcoding can be an error, or successful with more info
 oneof result {
 string error = 2;
 TranscodeData data = 3;
 }
}

// A set of transcoded segments following the profiles specified in the job.
message TranscodeData {

 // Transcoded data, in the order specified in the job options
 repeated TranscodedSegmentData segments = 1;

 // Signature of the hash of the concatenated hashes
 bytes sig = 2;
}

// Individual transcoded segment data.
message TranscodedSegmentData {

 // URL where the transcoded data can be downloaded from
 string url = 1;

}

Notes

Currently, any errors are dumped directly into the response in stringified form. This gives broadcasters more information to diagnose problems with remote transcoders. However, we may not want to return such details forever, as this may leak internal information that is best left private to a transcoder.

Broadcasters can use the difference in time between the request submission and the 200ok to approximate the upload time. The time between the 200ok and receiving the response body approximates the transcode time.

There is an end-to-end request timeout of 8 seconds, However, issues are likely to appear earlier, and any issues will likely to lead to gaps in playback and stuttering. For example, live streams that consistently take 4+ seconds (the segment length) to upload and transcode will be outrun by players.

Ping

gRPC Ping : PingPong -> PingPong

Upon startup, an orchestrator will verify its availability on the network. This is done by sending itself a Ping request with a random value, and verifying its own signature in the response.

message PingPong {

 // Implementation defined
 bytes value = 1;
}

Notes

The address the orchestrator uses to check availability is as follows:

	If a -serviceAddr is set, use that address

	If a Service URI is set in the Ethereum service registry, use that address

	Otherwise, discover the node’s public IP and use that address

Orchestrator To Redeemer

Applicable when running a ticket redemption service by using the -redeemer flag

gRPC QueueTicket: Ticket -> QueueTicketRes

QueueTicket is a unary RPC method that is called by an Orchestrator to send a winning ticket to the Redeemer. The request message has following format:

message Ticket {
 TicketParams ticket_params = 1;
 bytes sender = 2;
 TicketExpirationParams expiration_params = 3;
 TicketSenderParams sender_params = 4;
 bytes recipient_rand = 5;
}

The Redeemer will send back an empty message, QueueTicketRes on success as well as a 200 OK status. Upon error a 500 Internal Server Error error code will be returned alongside the error.

gRPC MaxFloat: MaxFloatReq -> MaxFloatUpdate

MaxFloat is a unary RPC method that is called by an Orchestrator when it requires the max float for a sender but no local cache is available. Its request takes in a sender’s ethereum address:

message MaxFloatReq {
 bytes sender = 1;
}

The server will respond with the MaxFloat for that sender in raw bytes format:

message MaxFloatUpdate {
 bytes max_float = 1;
}

gRPC MonitorMaxFloat: MaxFloatReq -> stream MaxFloatUpdate

MonitorMaxFloat is a server-side streaming RPC method that is called by an Orchestrator to receive max float updates for a sender. The stream will remain open until either the client or the server closes the stream or connection.

The request follows the same format as the MaxFloat method:

message MaxFloatReq {
 bytes sender = 1;
}

The response message also follows the same format but is now a stream of MaxFloatUpdate messages:

message MaxFloatUpdate {
 bytes max_float = 1;
}

TLS Certificates

Self-signed, with the DNSName field is set to the host name as specified in the registry URL. Generated anew each time a transcoder node starts up.

Notes

Orchestrator/transcoder certificates are self-signed, and generated anew each time the node starts up. The current TLS implementation in the broadcaster will fail out if the DNSName field does not match, otherwise the self-signed certificate is not verified.

IPs will also work in the DNS Name field (at least, the go client does not fail out). However, this may be problematic for orchestrators that are on unstable IPs or otherwise “move around”. Arguably, orchestrators shouldn’t move around, so perhaps this would serve to discourage that mode of operation.

Design Considerations

gRPC and HTTP

The division of the protocol into gRPC and plain-HTTP parts may seem odd. There
is a method to the madness: gRPC messages are encoded using Protocol Buffers,
and Protocol Buffers was not designed to handle large blobs of data [https://developers.google.com/protocol-buffers/docs/techniques#large-data].
Hence, when we need to transmit a large blob (such as a video segment), the
transmission is done through raw HTTP. For purposes other than sending large
blobs, gRPC gives us a convenient framework for building network protocols.

Upgrade Path

See the official recommendations [https://developers.google.com/protocol-buffers/docs/proto#updating]
for updating Protocol Buffers messages. The same principles of “add but don’t
modify or remove fields” carry over to gRPC service definitions: new services
can be added, but names should not be changed, nor should services be removed
unless the intent is to break backwards compatibility.

Orchestrator Webhook

Livepeer supports orchestrator discovery using a webhook. Webhook orchestrator discovery can be
enabled by starting a Livepeer Broadcaster node with the -orchWebhookUrl <endpoint> flag.
The <endpoint> is a url that returns an array of objects that each contains an “address” key
and a URL string value.

For example:

[
 {"address":"https://10.4.3.2:8935"},
 {"address":"https://10.4.4.3:8935"},
 {"address":"https://10.4.5.2:8935"}
]

The orchestrator webhook allows a Broadcaster node operator to periodically refresh its list of available orchestrators.
The list is refreshed no more than once per minute or as needed, depending on streaming conditions. Refer to the reliability documentation [https://github.com/livepeer/go-livepeer/blob/master/doc/reliability] for more information.

Payments

Probabilistic Micropayments

A broadcaster uses a probabilistic micropayment protocol to pay for transcoding work done by orchestrators.

The details of the protocol can be found in the specification [https://github.com/livepeer/wiki/blob/master/spec/streamflow/pm].

The client implementation of the protocol can be found in the pm [https://github.com/livepeer/go-livepeer/tree/master/pm] package.

Fee Estimation

A broadcaster estimates the fee required for a segment in estimateFee() [https://github.com/livepeer/go-livepeer/blob/731f6a5954e3ea190b9c5f0139491aa31e854a0a/server/segment_rpc.go#L692].

Note: This line [https://github.com/livepeer/go-livepeer/blob/8bf42baf3b363a03ee432dd1e9676e552e59f12c/server/segment_rpc.go#L709] sets the FPS for the outputs to 120 if transcoding is using passthrough FPS. The historical reason for this was that B did not have access to the FPS of the source segment because it did not do any probing so we just conservatively set the output FPS to 120 - this results in overpaying most of the time if the source FPS < 120, but also provides a higher likelihood that the estimated fee is always >= the actual fee. TODO: Consider removing this 120 FPS placeholder to stop overestimating the fee by so much.

At the moment, an orchestrator is only required to charge for encoding (and not for decoding) so the fee for a segment only depends on the # of pixels encoded i.e. the # of pixels in the set of transcoded outputs. For example, if an orchestrator transcodes a segment to 720p/30fps and 360p/30fps outputs then the # of pixels encoded would be (1280 * 720 * 30) + (640 * 360 * 120). The # of pixels can then be multiplied by the price per pixel to determine the fee for the segment.

A broadcaster needs to estimate the fee required for a segment before sending the segment so it can make sure that its balance with the orchestrator for the current session is sufficient to pay for the segment. If the estimated fee cannot be covered by broadcaster’s current balance with the orchestrator for the session then broadcaster will send a payment to increase its balance in order to pay for the segment. A payment consists of one or many probabilistic micropayment tickets - the sum of the expected value of each ticket in the payment is the overall value of the payment. The broadcaster can control the maximum value it will send with a payment using the -maxTicketEV flag - a higher value allows larger payments to be sent with the tradeoff of increased value at risk if transcoding for a segment is not completed (since an orchestrator is paid before it returns results).

A broadcaster uses the estimated fee to determine the # of tickets to include in a payment i.e. the overall payment value in newBalanceUpdate() [https://github.com/livepeer/go-livepeer/blob/731f6a5954e3ea190b9c5f0139491aa31e854a0a/server/segment_rpc.go#L730]. Internally, StageUpdate() [https://github.com/livepeer/go-livepeer/blob/731f6a5954e3ea190b9c5f0139491aa31e854a0a/core/accounting.go#L34] is called which will calculate the # of tickets required - the sum of the expected value of the tickets needs to be >= max(estimatedFee, ticketEV(O)) (see here [https://github.com/livepeer/go-livepeer/blob/731f6a5954e3ea190b9c5f0139491aa31e854a0a/server/segment_rpc.go#L750]) where ticketEV(O) is the required expected value of tickets required by the orchestrator.

The session balance system between a broadcaster and orchestrator (see here [https://github.com/livepeer/go-livepeer/blob/731f6a5954e3ea190b9c5f0139491aa31e854a0a/server/segment_rpc.go#L222] and here [https://github.com/livepeer/go-livepeer/blob/731f6a5954e3ea190b9c5f0139491aa31e854a0a/server/segment_rpc.go#L457]) is used to keep track of how much a broadcaster has paid during a session and how much is owed to the orchestrator based on work performed. The broadcaster credits its session balance with a payment - if it overpays then it adds extra credit to the session balance. Then, the orchestrator debits the session balance with the actual fee for a segment which is calculated based on the actual # of output pixels for the segment. Any remaining amount in the balance (i.e. from over-crediting) can be used to cover future segments for the session.

Ticket Redemption Service

The Ticket Redemption Service allows Orchestrator nodes to redeem winning tickets on-chain using a separate ETH account on the Ticket Redemption Service. Orchestrator nodes no longer need to have an account funded with ETH to pay for transactions on the Ethereum network.

It is responsible for redeeming winning tickets as well as pushing max float updates about broadcasters back to its connected Orchestrators.

Max float is the guaranteed value an Orchestrator will be able to claim from a Broadcaster’s reserve. It accounts for the current reserve allocation from a Broadcaster to an Orchestrator as well as pending winning ticket redemptions.

*A more detailed description about max float and it’s relation to a broadcaster’s reserve can be found in the PM protocol spec [https://github.com/livepeer/wiki/blob/master/spec/streamflow/pm.md#reserve].

*This document uses the term sender, it can be used interchangeably with Broadcaster.

TicketQueue

	The ticketQueue is a loop that runs every time a new block is seen. It will then pop tickets off the queue starting with the oldest ticket first, and sends it to the LocalSenderMonitor for redemption if the recipientRand for the ticket has expired.

	When the LocalSenderMonitor receives a ticket from the ticketQueue it will substract ticket.faceValue from the outstanding maxFloat as long as the ticket is in limbo.

 This will trigger a LocalSenderMonitor.SubscribeMaxFloatChange(ticket.sender) notification

	The ticket is sent to a remote Ethereum node for redemption

	When the Ethereum node returns a response the ticket.faceValue is added to the maxFloat again as the ticket is no longer in limbo.

 This will trigger a LocalSenderMonitor.SubscribeMaxFloatChange(ticket.sender) notification

Monitoring Max Float

	When max float for a sender is requested from the RedeemerClient but no local cache is available, an (unary) RPC call will be sent to the Redeemer.

	A second RPC call to MonitorMaxFloat(sender) will open up a server-side gRPC stream to receive future update.

If this call fails the response from step 1 is returned, but not kept in cache to prevent it becoming stale due to not being able to receive further updates

	The Redeemer goroutine started by the RPC call in step 2 will start a subscription to listen for max float changes from the LocalSenderMonitor for the specified sender using LocalSenderMonitor.SubscribeMaxFloatChange(sender).

Each open server-side stream will have its own subscription that will be closed when the client closes the stream. This means that each client will have a subscription for each sender it is interested in.

	Once the subscription from step 3 emits an event that indicates a state change for the specified sender, the Redeemer will invoke LocalSenderMonitor.MaxFloat(sender) to fetch the latest value.

	Upon retrieving the latest max float value for sender it will be sent over the server-side gRPC stream.

	Upon receiving a MaxFloatUpdate over the server-side gRPC stream for sender it will update its local cache for that sender accordingly.

	Subsequent calls to RedeemerClient.MaxFloat(sender) will return the locally cached value for sender as long as it remains available.

	The local cache for sender will be cleaned up if is not requested for 5 minutes.

[image: _images/ticketflow.png]Ticket Flow

Blockchain Events

So far we’ve discussed LocalSenderMonitor.addFloat() and LocalSenderMonitor.subFloat() being responsible for triggering LocalSenderMonitor.SubscribeMaxFloatChange(sender) notifications, but these can also be triggered by certain Ethereum events related to the Livepeer protocol:

	FundReserve: When a broadcaster funds its reserve the maxFloat allocation increases by the added reserve divided by the active Orchestrator set size.

	NewRound: If the active Orchestrator set size changes, the maxFloat will become the current broadcaster’s reserve divided by the new active set size. Since this event impacts all participants in the protocol the Redeemer will have to send updates for every sender it is keeping track of.

[image: _images/eth-events.png]Ethereum Events

go-livepeer release process

Branches

We presently use three branches for go-livepeer releases.

master

This branch is compatible with contracts on Rinkeby and mainnet. Code committed to this branch MUST NOT break contract compatibility on Rinkeby or mainnet.

Releases are cut from this branch. All releases should have a tag of the form vMAJOR.MINOR.PATCH.

Built in CI with -tags mainnet so resulting binaries can connect to private networks, Rinkeby and mainnet. Published to Docker Hub as livepeer/go-livepeer:master and e.g. livepeer/go-livepeer:0.5.3.

rinkeby

This branch is compatible with contracts on Rinkeby, but may be incompatible with contracts on mainnet. Code committed to this branch MUST NOT break contract compatibility on Rinkeby, but may break contract compatibility on mainnet. This branch can be merged into master when it is compatible with contracts on mainnet.

Built in CI with -tags rinkeby so resulting binaries can connect to private networks or Rinkeby. Published to Docker Hub as livepeer/go-livepeer:rinkeby.

dev

This branch may be incompatible with contracts on Rinkeby and mainnet. Code committed to this branch can break contract compatibility with Rinkeby or mainnet. This branch can be merged into rinkeby when it becomes compatible with contracts on Rinkeby.

Built in CI with -tags dev so resulting binaries can only connect to private networks. Published to DockerHub as livepeer/go-livepeer:dev.

Contract Compatible Changes

If changes are compatible with contracts on Rinkeby and mainnet then they can be committed directly to the master branch.

Contract Incompatible Changes

Suppose certain changes depend on a new contract that has not been deployed on Rinkeby or mainnet yet or a contract upgrade that has not been executed on Rinkeby or mainnet yet. The steps to land these changes on the master branch would be:

	Deploy the contract(s) on a private network

	Test the changes on the private network

	Merge the PR(s) into dev

	Deploy/upgrade the contract(s) on Rinkeby

	Merge dev into rinkeby via PR

	Test the changes on Rinkeby

	Deploy/upgrade the contract(s) on mainnet

	Merge rinkeby into master via PR

Note that step 3 and on do not need to be executed after every single PR merge in dev. Multiple PRs can be merged to dev before executing step 3 and on.

Release flow

Once all planned code updates are merged into master, we use the release candidate binaries built by CI for internal testing on mainnet. During this stage, we

	Roll out the binaries to internal mainnet infrastructure

	Check that user facing bugs described in closed bug reports cannot be reproduced

	Check that user facing features are working as expected

	Run stream tests that involve sending/monitoring streams sent into broadcasters that are then routed to one or many orchestrators

The goals of this stage are:

	Test the release candidate on internal infrastructure that can be easily monitored

	Make sure that code updates did not introduce any obvious regressions

	Perform manual QA for user facing changes

Once we complete this stage, we prepare a mainnet release.

Cutting a mainnet release of go-livepeer

Create the release commit on a branch:

	Checkout a release branch

git checkout -b release-0.5.2

	echo -n '0.5.2' > VERSION

	Update the changelog

	Copy all entries from CHANGELOG_PENDING.md to the top of CHANGELOG.md and update vX.X to the new version number

	Run go run cmd/scripts/linkify_changelog.go CHANGELOG.md to add links for all PRs

	Reset CHANGELOG_PENDING.md

	git commit -am 'release v0.5.2'

	git push -u origin release-0.5.2

	Merge the release commit into master via PR. Then, push the release tag up.

git checkout master
git pull
git log # Confirm that no new changes came into master while you were doing the previous steps
git tag v0.5.2
git push origin v0.5.2

	Once the CI (Github Actions) process completes, you should see your release at https://github.com/livepeer/go-livepeer/releases. Fix up the release notes to be more human-friendly, using previous releases as a guide.

	Update commit hash, version and checksum for Homebrew as per https://github.com/livepeer/homebrew-tap/pull/5

	Announce the release on Discord in #network-announcements

Livepeer Orchestrator Selection and Reliability Strategy

Overview

To achieve greater network scalability, a broadcaster works with multiple orchestrators at once. The Broadcaster stops working with any orchestrator that has gone offline or does not return transcoded segments, and “refreshes” the list of orchestrators it works with if “enough” orchestrators on its original list are unresponsive (see Orchestrator List Refresh). The Broadcaster distributes segments to Orchestrators using a “round robin” strategy (see Orchestrator Selection), given that Orchestrator cannot have more than one segment per stream in flight (this mitigates back logging). Therefore, a Broadcaster sends segments to “free” Orchestrators on their “saved list”. The ability to send segments to a selection of Orchestrators gives individual Orchestrators more time to process segments, and prevents OrchestratorBusy errors.

BroadcastSessionsManager

Orchestrators are managed by a BroadcastSessionsManager stored in the rtmpConnections on the LivepeerServer interface. The sessions manager is initiated when the RTMP stream is registered by gotRTMPStreamHandler. The orchestrator list is first populated then, when refreshSessions is called within NewSessionManager.

The BroadcastSessionsManager stores orchestrators in two lists, a sessList and a sessMap. The sessList is an array containing a “working” list of orchestrators. When a Broadcaster is in need of an orchestrator, it selects and removes it from sessList only if said Orchestrator also exists in sessMap. Therefore, sessMap contains all orchestrators currently in use or available for use. It is a map with a string key of the URI of the orchestrator, and a value of that orchestrator’s BroadcastSession.

Orchestrator List Refresh

The orchestrator list is refreshed when the number of sessions in sessList is less than double the HTTMPTimeout in seconds (hard-coded to 8 seconds at the moment) divided by the length of segments (hard-coded to 2 seconds at the moment) OR less than the size of the OrchestratorPool saved on disk, whichever is less (i.e. when its length is less than what is required to keep in memory). This happens at startup (as described above), and when an orchestrator is selected for individual transcoding in selectSession.

Orchestrator Selection

To give preference to O’s that respond with transcoded segments quickly, instead of selecting an Orchestrator from the beginning of sessList when needed, and placing new Orchestrators that are finished processing a segment at the end, selectSession takes Orchestrators from the end of sessList. If transcoding is successful, it adds them back to the end of sessList.

Transcoding Errors & Retries

If there is an error uploading segment to an Orchestrator’s OS, submitting the segment to an Orchestrator, downloading transcoded segments, or the segment signature check fails, the Orchestrator is removed from the sessMap. The segment is retried with a different Orchestrator. When selectSession is called in this retry scenario, though the removed session might still exist in sessList, only a session that still exists in sessMap will be selected. If there is no error in segment transcoding, completeSession adds session back to sessList. Retries stop if sessMap is empty.

Storage

To prevent segment front-running (when an Orchestrator writes to a file that should belong to another Orchestrator), each Orchestrator is given an external storage path prefix used to create its own unique OS session. The prefix is composed of the stream’s ManifestID, and a randomly generated manifest Id.

MaxSessions

When an Orchestrator - Transcoder are run on the same node, a -maxSessions flag can be used to specify the node’s own capacity for transcoding. A MaxSessions hard-coded value in Livepeernode.go caps the number of segment channels that can be created per Orchestrator, which limits the number of streams it can ingest. MaxSessions is the default value that is overridden with -maxSessions.

Webhook Authentication

Incoming streams can be authenticated using webhooks on both orchestrator and broadcaster nodes. To use these webhooks, node operators must implement their own web service / endpoint to be accessed only by the Livepeer node. As new streams appear, the Livepeer node will call this endpoint to determine whether the given stream is allowed.

The webhook server should respond with HTTP status code 200 in order to authenticate / authorize the stream. A response with a HTTP status code other than 200 will cause the Livepeer node to disconnect the stream.

To enable webhook authentication functionality, the Livepeer node should be started with the -authWebhookUrl flag, along with the webhook endpoint URL.

For example:

livepeer -authWebhookUrl http://ownserver/auth

Broadcasters

Webhooks can authenticate streams supported by the RTMP and HTTP push ingest protocols. See the ingest documentation for details on how to use these protocols.

For each incoming stream, the Livepeer node will make a POST request to the http://ownserver/auth endpoint, passing the URL of the request as JSON object.

For example, if the incoming request was made to rtmp://livepeer.node/manifest, the Liverpeer node will provide the following object as a request to the webhook endpoint:

{
 "url": "rtmp://livepeer.node/manifest"
}

The webhook may respond with an empty body. In this case, the manifestID property of the stream will be taken from the URL. If the URL does not specify a manifest id, then it will be generated at random. Otherwise, the webhook endpoint should respond with a JSON object in the following format:

{
 "manifestID": "ManifestID",
 "streamKey": "SecretKey",
 "presets": ["Preset", "Names"],
 "profiles": [{"name":"ProfileName", "width":320, "height":240, "bitrate":1000000, "fps":30, "fpsDen":1, "profile":"H264Baseline", "gop" "2.5"}]
}

The Livepeer node will use the returned manifestID for the given stream.

The manifestID should consist of alphanumeric characters, only. Please avoid using any punctuation characters or slashes within the manifestID

An optional streamKey may be provided in order to protect the RTMP stream from playback. If the streamKey is omitted, a random key will be generated.

Presets can be specified to override the default transcoding options. The available presets are listed here [https://github.com/livepeer/go-livepeer/blob/master/common/videoprofile_ids.go].

Custom transcoding profiles can be provided if the presets are not sufficient. Given a stream name (manifest ID) of “ManifestID” and a profile name of “ProfileName”, the specific profile will be available for playback at /stream/ManifestID/ProfileName.m3u8. However, to take advantage of ABR features in HLS players, the top-level stream name should usually be supplied instead, eg /stream/ManifestID.m3u8 The bitrate field is in bits per second. The fps field can be omitted to preserve the source frame rate. The fpsDen (denominator) field can also be omitted for a default of 1. Both presets and profiles can be used together to specify the desired transcodes.

The profile field is used to select the codec (H264) profile. Supported values are "H264Baseline, H264Main, H264High, H264ConstrainedHigh", the field can be omitted (or set to "None") to use the encoder default.

The gop field is used to set the GOP [https://en.wikipedia.org/wiki/Group_of_pictures] length, in seconds. This may help in post-transcoding segmentation to smooth out playback if the original segments are long or irregularly sized. Omitting this field will use the encoder default. To force all intra frames, use “intra”.

There is simple webhook authentication server example [https://github.com/livepeer/go-livepeer/blob/master/cmd/simple_auth_server/simple_auth_server.go].

Orchestrators

Webhooks can be used to authenticate discovery requests. When a webhook URL is provided on node startup using the -authWebhookUrl flag the Livepeer node will make a POST request to the specified URL on each GetOrchestratorInfo call.

If a valid priceInfo object is provided in the response the orchestrator will use it instead of its default price. A valid price requires pricePerUnit >= 0 and pixelsPerUnit > 0.

Request Object

{
 "id": string
}

Response Object

{
 "priceInfo": {
 "pricePerUnit": number,
 "pixelsPerUnit": number
 }
}

Selection

A broadcaster uses a selection algorithm to select the orchestrator to use for the next segment to be transcoded from a list of eligible active orchestrators.

The selection algorithm is implemented by a selector that implements the BroadcastSessionsSelector [https://github.com/livepeer/go-livepeer/blob/master/server/selection.go] interface.

The current default selector implementation is the MinLSSelectorWithRandFreq [https://github.com/livepeer/go-livepeer/blob/1af0a5182cd3a9aa38d961b6d1d104a3693ec814/server/selection.go#L118] which does the following:

	Tracks “unknown sessions” and “known sessions”

	A session is unknown if there is no latency score tracked yet i.e. no segment was transcoded by the orchestrator for this session yet

	A session is known if there is a latency score tracked i.e. a segment was transcoded by the orchestrator for this session already

	A latency score is calculated as the ratio between segment duration and the round trip response time (i.e. upload, transcode, download)

	If there are no known sessions available, then select from the unknown sessions

	If the best latency score of all known sessions does not meet the latency score threshold, then select from the unknown sessions

	Otherwise, select from the known sessions

Selecting Unknown Sessions

	X% of the time select an unknown session randomly

	The rest of the time, use stake weighted random selection to select the unknown session

Selecting Known Sessions

	Select the known session with the best latency score

Future

A few considerations for future iterations on selection algorithms:

	Consider additional inputs outside of just speed and price including transcoding quality (i.e. lowest loss compared to original signal) and efficiency (i.e. highest quality per bit)

	Previous work:

	Leaderboard scoring framework [https://livepeer.notion.site/Leaderboard-Score-Framework-a420c0e9b6e4408b81cf0d9ffcd9d40e]

	Presentation [https://www.youtube.com/watch?v=ZDCg5feDELA] on selection framework based on technical constraints and economic preferences

	Should be able to express their preferences in a way that adjusts how much each input into the selection algorithm is weighted (i.e. weight speed over price, weight quality over speed, etc) and a list of weights (or a weights generation algorithm) could be used to customize how the selection algorithm works

Configuring Transcoding Options

The Livepeer node offers several methods to configure the transcoding output.

	Webhook authentication.

	-transcodingOptions CLI flag with a list of presets

	-transcodingOptions CLI flag with a JSON configuration file

	/setBroadcastConfig endpoint for the CLI API

	livepeer_cli tool

Codecs

Transcoding to and from H.264 is supported.

Aspect Ratio

The Livepeer transcoder maintains the aspect ratio of the source video in order to maintain output video quality. This may sometimes result in the transcoded resolution being somewhat different from the original specification.

If the aspect ratio of the source video does not match the target aspect ratio, the output is fit to the larger dimension, and the smaller dimension is rescaled proportionately to maintain the source aspect ratio.

If a different behavior is needed, please let us know [https://github.com/livepeer/go-livepeer/issues/new?template=feature_request] by filing a feature request.

Webhook Authentication

See the webhook documentation for full details. To configure the transcoding output, either the profiles or presets fields in the webhook response can be set, or both.

The profiles field in the webhook follows the JSON options that are described in this document. The valid names for the preset field are described in the following section.

-transcodingOptions CLI flag with a list of presets

The Livepeer node comes with a set of pre-defined transcoding presets. At start-up, the node can be configured with a comma-separated list of presets. The available presets are defined within the LPMS video profiles [https://github.com/livepeer/lpms/blob/master/ffmpeg/videoprofile.go#L60-L92].

For example, to run the Livepeer node with the 720P 25fps and 240p 30fps 4x3 presets:

livepeer -transcodingOptions P720p25fps16x9,P240p30fps4x3

-transcodingOptions CLI flag with a JSON configuration file

The Livepeer node can receive transcoding configuration via JSON config file. Run the node with the -transcodingOptions flag and a path to the JSON file.

livepeer -transcodingOptions /path/to/config.json

The JSON configuration takes a list of renditions,

[
 { rendition },
 { rendition },

]

Each rendition object takes the following fields:

	name : String identifier by which the rendition can be referred to. If
a name is omitted, the default naming scheme follows webhook_<width>x<height>_<bitrate>

	width : Integer width

	height : Integer height

	bitrate : Integer bitrate, in bits per second

	fps : Integer framerate, in frames per second. If zero or omitted, no FPS
adjustment is done and the output will have the same number of frames spaced
at similar timing intervals as the source.

	fpsDen : Integer framerate denominator. Useful for interoperability with
certain applications, eg NTSC’s 29.97 fps (30000/1001). This value defaults to 1 if zero or omitted.

	profile : String codec encoding profile to use. Supported values are
“H264Baseline”, “H264Main”, “H264High”, “H264ConstrainedHigh”. The field can
be omitted or set to “None” to use the encoder default.

	gop : String GOP [https://en.wikipedia.org/wiki/Group_of_pictures] length,
in seconds. This may help in post-transcoding segmentation to smooth out
playback if the original segments are long or irregularly-sized. Omitting this
field will use the encoder default. To force all intra frames, use “intra”.

An example of a full JSON configuration:

[
 {
 "name": "ntsc-1080p",
 "width": 1920,
 "height": 1080,
 "bitrate": 5000000,
 "fps": 30000,
 "fpsDen": 1001,
 "profile": "H264High",
 "gop": "2"
 },{
 "name": "webrtc-720p",
 "width": 1280,
 "height": 720,
 "bitrate": 1500000,
 "profile": "H264ConstrainedHigh"
 },{
 "name":"highlight-reel",
 "width":160,
 "height":120,
 "bitrate":100000,
 "fps": 1,
 "gop":"intra"
 }
]

/setBroadcastConfig endpoint for the CLI API

The CLI port has a /setBroadcastConfig API . This may be useful if the transcoding options set via CLI flags need to be adjusted at runtime. Note that pricing needs to be set; for offchain transcoding, a placehodler value will suffice.

curl 'http://localhost:7935/setBroadcastConfig?transcodingOptions=P720p25fps16x9,P240p30fps4x3&maxPricePerUnit=1&pixelsPerUnit=1'

livepeer_cli tool

For a wizard-based interface to the CLI API, the livepeer_cli tool may be used. Look for the ‘Set broadcast config’ option and follow the prompts.

livepeer_cli
... status information about the node
What would you like to do? (default = stats)
various options
16. Set broadcast config

> 16
Enter a maximum transcoding price per pixel, in wei per pixels (pricePerUnit / pixelsPerUnit).
eg. 1 wei / 10 pixels = 0,1 wei per pixel

Enter amount of pixels that make up a single unit (default: 1 pixel) - >

Enter the maximum price to pay for 1 pixels in Wei (required) - > 1
Identifier	Transcoding Options
0		P144p30fps16x9
1		P240p25fps16x9
2		P240p30fps16x9
3		P240p30fps4x3
4		P360p25fps16x9
5		P360p30fps16x9
6		P360p30fps4x3
7		P576p25fps16x9
8		P576p30fps16x9
9		P720p25fps16x9
10		P720p30fps16x9
11		P720p30fps4x3
12		P720p60fps16x9
Enter the identifiers of the video profiles you would like to use (use a comma as the delimiter in a list of identifiers) - > 10,3

Verification

The Livepeer node supports two types of verification when running with the -broadcaster flag:

	Local verification

	This currently involves pixel count and signature verification.

	Pixel count verification ensures that the number of pixels that the orchestrator uses to charge the broadcaster for payments matches the number of pixels actually encoded by the orchestrator. The orchestrator reports the number of pixels encoded with each result returned to the broadcaster and the broadcaster compares this value with the actual number of pixels in the results.

	Signature verification ensures that the results received are cryptographically signed using a known Ethereum account associated with an orchestrator. The Ethereum account used to sign the results may be an on-chain registered address or it may be an account specified in the address field of the OrchestratorInfo message sent to the broadcaster during discovery.

	Tamper verification

	This currently uses an external verifier that checks if a video has been tampered.

Local verification is enabled by default when the node is connected to Rinkeby and mainnet and disabled by default when the node is running in off-chain mode. Local verification can be explicitly enabled by starting the node with -localVerify and can be explicitly disabled with -localVerify=false.

Tamper verification is disabled by default and can be enabled by specifying -verifierURL. See this guide [https://livepeer.org/docs/video-developers/how-to-guides/verification] for instructions on connecting the node to an external verifier that runs tamper verification. Note that when tamper verification is enabled, local verification is also enabled.

 _static/file.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_images/eth-events.png
version https://git-lfs.github.com/spec/v1
oid sha256:bd23ba54de0a4ef25dc7c10afe42e3179de10047d43c30facc21d85bfb2fa42f
size 284626

_images/ticketflow.png
version https://git-lfs.github.com/spec/v1
oid sha256:a3796206cf25858e8df232f436bb2265eb5a36fefabc0f0b59ca25a04c8e17ee
size 371817

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

